报告人:高发顺,河南城建学院数理学院副教授
时间:2023年6月3日10:00
地点:4号报告厅
摘要:In this talk, we will consider a class of the critical Choquard equations
in
,
where
,
is a bounded nonnegative function in
,
stands for the convolutions and the exponent
is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. By applying a finite dimensional reduction argument and developing novel local Pohozaev identities, we prove that if the function
has a topologically nontrivial critical point then the problem admits infinitely many solutions with arbitrary large energies.
高发顺简介:高发顺,理学博士,河南城建学院副教授。2018年6月博士毕业于浙江师范大学数学与计算机科学学院,2019年,博士学位论文获浙江省优秀博士学位论文。主要从事非线性分析和临界点理论与变分学的研究。 在Calc. Var. Partial Differential Equations,Math. Z., J. Differential Equations, Nonlinearity,Commun. Contemp. Math.,Sci China Math, Proc. Roy. Soc. Edinburgh Sect. A, Advances in Nonlinear Analysis,Nonlinear Anal.,J. Math. Anal. Appl., Discrete Contin. Dyn. Syst. A,Z. Angew. Math. Phys.,Topol. Methods Nonlinear Anal.等国内外重要期刊上发表与项目相关的学术论文18篇,被引用600余次。研究成果获英国物理学会颁发2022年度的“中国高被引论文奖”。2020年主持国家自然科学基金青年项目。